Process Validation Guidelines

Report highlights | 23rd February 2018

Process validation is an important element of pharmaceutical quality system

An effective system provides assurance of the continued capability of processes and controls to produce a product of desired quality and to identify areas for continual improvement

ICH Harmonised Tripartite Guideline
 Pharmaceutical Development Q10

Quality, safety and efficacy must be **designed and built into the product**; quality cannot be inspected or tested into the product

– WHO Guidelines on Validation

Effective process validation contributes significantly to assuring drug quality; Quality cannot be adequately assured merely by inprocess and finished-product inspection or testing

 – FDA: Process Validation: General Principles & Practices Process validation should not be viewed as a oneoff event. It incorporates a lifecycle approach linking product and process development, validation of the commercial manufacturing process and maintenance of the process in a state of control during routine commercial production

> EMA: Guideline on process validation for finished products

SOURCE: Excerpts from guidelines by regulatory agencies

Process validation is critical to ensure product quality, safety, delivery and cost

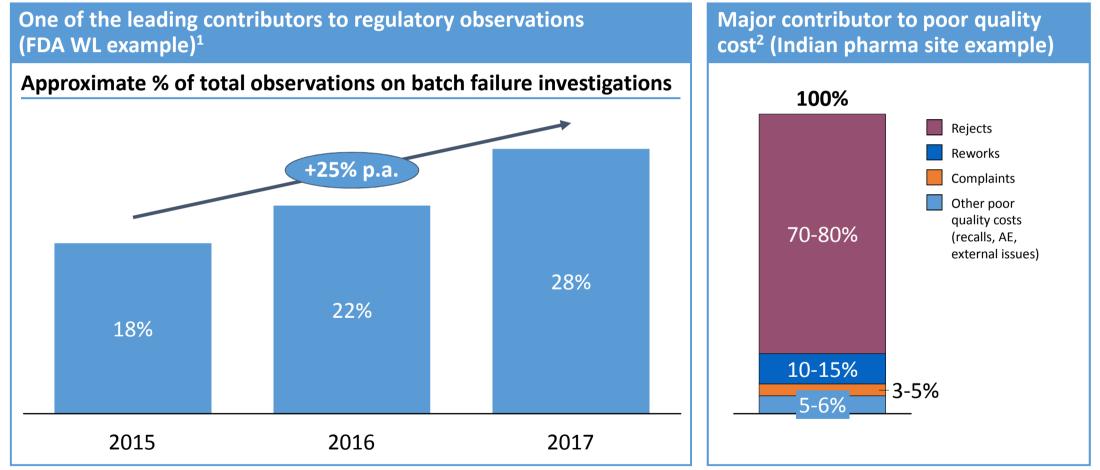
Quality and safety

Ensure patient safety

Quality, safety & efficacy is built into the product

Minimum rejects & reworks

Reduce batch to batch variation



Improve performance for legacy and new drugs

Reduce cost of lost sales & remediation

Product quality related investigations have been on the rise and contribute maximum to the cost of poor quality

¹ Analysis of FDA WL over the last 3 years

2 Poor Quality costs are costs related to rejects, reworks, complaints, adverse events, recalls and other related to production failure or external issues

Process validation guideline adopts the lifecycle approach and is designed for implementation in the Indian context

Lifecycle approach for process validation

Stage 1: Process design Commercial manufacturing process defined based on knowledge gained through development & scale-up activities

Stage 2: Process qualification Process design **evaluated to determine if it is capable of reproducible** commercial manufacture

Stage 3: Continuous process verification **Ongoing assurance** gained during routine production that the process remains in a state of control

Each lifecycle stage covers the following elements

- Detailed actionable steps to execute the guidelines at shop floor
- Harmonised and standardised guidances, integrating all guidelines and SOPs of QF members
- Templates and tools for risk assessment, statistically defining number of batches
- Specimen and targeted elements of process qualification protocol
- Sampling plans and strategies, including packaging as a part of process validation

Indian Pharmaceutical Alliance

Process validation Sub-group 2

Indian Pharmaceutical Alliance

Multiple elements of the process validation guideline are unique and designed specifically for the Indian pharma industry

Stage 3: Continuous process Stage 1: Process design **Stage 2: Process Qualification** verification Risk Assessment & Mitigation Plan Risk assessment to derive no. of Decision trees for any change in • product lifecycle batches (earlier 1 or 3) Derive/define QTPP, CMA, CPP & CQA # batches: Based on complexity of the Change specific assessment product and process criteria defined through flow Product development with QbD chart approach Unit operation wise – testing plan Verification of new and legacy Establish design space PPQ protocol specimen products Impact analysis : Scalable & non – Extensive sampling plan Packaging Validation scalable parameter Define alert/ control limit Pre validation batches i.e Scale up Validation batch failure criteria and exhibit, or engineering batch action plan

NON-FXHAUSTIVE

STAGE 1 Indian Pharmaceutical Alliance

Build process knowledge

- Early process design experiments to be conducted in accordance with sound scientific methods & principles
- **Design of Experiment (DOE)** helps develop process

Establish strategy

- Strategies designed to reduce input variation, or combine approaches
- Decisions regarding process controls aided by earlier risk assessments

Deliverables from Stage 1

- 25+ deliverables defined for stage 1 in guidelines, including:
- 1. Critical Quality Attributes (CQAs)
- 2. Criticality and Risk Assessments
- 3. Quality Target Product Profile (QTPP)
- 4. Manufacturing Process Design
- 5. Process Validation Master Plan
- 6. Process Control Strategy

STAGE 1 Indian Pharmaceutical Alliance

2. Risk assessment specimen designed to capture product specific life cycle history

Elements to be covered

- 1 Formula
 - 2 Process flow
 - 3 CMAs of input materials (raw materials and packing materials)
 - Detailed Technical GAP analysis of equipment, unit operation wise
 - 5 CPP unit operation wise
- 6 Challenges faced and remedies at various stages (design to life cycle)
 - Deviation/OOS/OOT history
- 8 Learning and way forward

6. Elements of control strategy harmonized & standardised

All product quality attributes & process parameters (critical and non-critical) included

Raw material controls	Performance parameters	Processing and hold time
In-process and release specs	Process parameter & ranges	Process analytical technology
In-process controls	Process monitoring	

Unit operation wise sampling methodology defined for PPQ studies

Sampling Strategy

- Extensive sampling plan (ASTM guideline E2709 & E2810) to demonstrate consistency
 - Blend uniformity
 - Content uniformity
- Process flow diagrams for assessment of uniformity
- Should include statistical rationale that underline the plan

Setting acceptance criteria and control limits

- Criteria for PPQ to be based on data available from Stage 1, prior knowledge and equipment capabilities
- Process of individual product & process variable evaluation defined
- Acceptance criteria as per ASTM defined includes:
 - Incoming material
 - Process parameters (CPP & KPP)
 - Attributes

NON-EXHAUSTIVE

Key elements of CPV program detailed

CPV monitoring plan		 Outline how various departments interact and how information is compiled and reviewed Comprehensive plan covering all elements, including roles and responsibilities, data analysis methods, sampling & criteria, etc.
Demon- strating CPV		 2 primary sources of data: Process parameters Potential sources of variability Raw material quality Redundant equipment Personnel impact on process
Incorporating feedback from CPV	KÅ	 Communication of review outcomes to manufacturing, quality, and regulatory stakeholders to modify the control strategy Frequency of data review to defined basis risk Annual commercial data compilation for Annual Product review

STAGE 3 Indian Pharmaceutical Alliance

- 1 New products
- 2 Manufacturing site of product
- 3 Approved manufacturing process
- 4 Manufacturing process controls
- 5 Batch sizes
- 6 Equipment change
- 7 Capacity of an equipment
- 8 Source of API/Key RM
- 9 Specification of primary pack of finished product
- **10** Shape dimension of container

- 11 Approved pack size of finished product
- 2 PM which is not in direct contact with product
- **I3** Vendor of PM
- 14 Primary packaging material of finished product
- 15 Qualitative/quantitative of composition secondary pack
- 16 Test procedure for primary PM & RM
- 17 Packing machine
- **18** Special features of packaging material
- 19 Secondary/tertiary packaging

Benefits of having a robust process validation

1	Right At First Time	
2	Improve Performance and reduce trial and error	
3	Reduce Product Recall	
4	Reduce Field Alert	
5	Reduce Warning letters / 483's	
6	Improvement in product conformance via scientific Risk based approach	
7	Investigation cycle time reduction.	