

Indian Pharmaceutical Alliance

Validation of Analytical Procedures

Sharad D. Mankumare, Ph.D., Director, Reference Standards Laboratory & Verification Program United States Pharmacopeia, India

Disclaimer

Because USP text and publications may have legal implications in the U.S. and elsewhere, their language must stand on its own. The USP shall not provide an official ex post facto interpretation to one party, thereby placing other parties without that interpretation at a possible disadvantage. The requirements shall be uniformly and equally available to all parties.

In addition, USP shall not provide an official opinion as to whether a particular article does or does not comply with compendial requirements, except as part of an established USP verification or other conformity assessment program that is conducted separately from and independent of USP's standard-setting activities.

Certain commercial equipment, instruments or materials may be identified in this presentation to specify adequately the experimental procedure. Such identification does not imply approval, endorsement, or certification by USP of a particular brand or product, nor does it imply that the equipment, instrument or material is necessarily the best available for the purpose or that any other brand or product was judged to be unsatisfactory or inadequate.

This course material is USP Property. Duplication or distribution without USP's written permission is prohibited.

USP has tried to ensure the proper use and attribution of outside material included in these slides. If, inadvertently, an error or omission has occurred, please bring it to our attention. We will in good faith correct any error or omission that is brought to our attention. You may email us at: legal@usp.org.

Introduction

Purpose of Validation

USP Education

Validation of Analytical procedures are essential to prove that:

01

02

03

The method is acceptable for intended use such as evaluation of a known product for potency, and impurities

Identification of sources and Quantitation of potential errors w.r.t reliability and sustainability

Establish "Proof of Concept" that a procedure can be used for decision making throughout its life cycle

• Satisfy regulatory requirements

Introduction

Challenges in Validation of Analytical Procedures

- Almost from three decades, firms are carrying out validation activity by traditional way
- Despite best efforts, method failures during regular use and transfer
- Guidelines describe the use of appropriate statistical tools but there is limited information on **how** to use these tools effectively
- Variable approaches across industry to report results and conclusions which warrants queries/observations from agencies

The analyst needs to know whether the **results of measurement can be accepted with confidence** or, on the contrary, rejected because they are wrong. Also, it is more important for the researcher to know if he **can trust a newly developed procedure** and what are the criteria to ensure the validity of new procedure.

The application of statistical tools allow us to address all these points. USP Education

5

Introduction

Validation Characteristics

Characteristics

Validation characteristics to be selected according to type of method:

USP Education

Specificity
Precision
Accuracy
Detection limit (LOD)
Quantitation limit (LOQ)
Linearity
Range
Robustness (not part of the formal validation process)
Solution Stability

Precision

The precision of an analytical procedure expresses the **closeness of agreement** (degree of scatter) between a series of measurements obtained from **multiple sampling** of the **same homogeneous sample** under the prescribed conditions.

- Minimum 9 determination covering the specified range (3 conc./3 replicates); or
- Minimum 6 determinations at 100% of test concentration

USP Education

usp

USP Education

10

Precision

ANOVA Assumptions

Distribution should be normal

Independent observations

Equivalent Variations

Hypothesis set up

Null Hypothesis

 H_0 = Population means are equal

Alternative Hypothesis

 H_a = Population means are not equal

Null Hypothesis

 H_0 = Population means are equal

Alternative Hypothesis

 H_a = Population means are not equal

F-test

 $F = \frac{\text{Between group variation}}{\text{Within group variation}}$

F-Crit > *F*-Cal ; Null Hypothesis

F-Crit < *F*-Cal ; Alternative Hypothesis

Precision

Hypothesis set up

Null Hypothesis

 H_0 = Population means are equal

Alternative Hypothesis

 H_a = Population means are not equal

p-value

Significance value, $\alpha = 0.05$

p-value > 0.05 ; Null Hypothesis

p-value < 0.05 ; Alternative Hypothesis

 α = It is the maximum acceptable level of risk for rejecting a true null hypothesis (Type I error)

The *p*-value represents the probability of incorrectly rejecting the null hypothesis when it is actually true (Type I error).

Case Study-1 cont..

Interaction

Within

USP Education_{Total}

Anova: Two-Factor With Replication

1

20

23

0.262504167

0.4768225

0.551

0.466727

0.2625042

16.892996

9.53645

Overall repeatability= 100*(Sqrt 0.47/99.76)= 0.69%

F crit

4.351

4.351

4.351

14

Case Study-1 cont..

Anova: Two-Factor With Replication

ANOVA						
Source of Variation	SS	df	MS	F Cal	P-value	F crit
Analyst	7.0742042		1 7.074204167	14.84	0.000995	4.351
Instrument	0.0198375		1 0.0198375	0.042	0.840439	4.351
Interaction	0.2625042		1 0.262504167	0.551	0.466727	4.351
Within	9.53645		20 0.4768225			
Total	16.892996		23			

USP Education

© 2018 USP

15

Statistical analysis to estimate Precision

For an alternative procedure to be considered to have "comparable" precision to that of a current procedure, its precision **must not be worse** than that of the current procedure by an amount deemed important.

Procedure:

- Estimate the variance (s²) of each procedure
- Calculate a one-sided upper confidence interval for the ratio of (true) variances

 $Ratio = \frac{Variance \ of \ alternative \ procedure}{Variance \ of \ current \ procedure}$

Conclusion:

If the one-sided upper confidence bound limit **is less than this upper acceptable limit**, then the precision of the alternative procedure is considered acceptable.

USP Education

© 2018 USF

Statistical analysis to estimate Precision

Three different quantities of reference standard were weighted to correspond to three different percentages of the test concentrations: 50%, 100%, and 150%.

The value of τ is 1000 mg/g for all three concentrations. The computed statistics from the validation data set include the sample mean (Y), the sample standard deviation (S), and the number of reportable values (n).

Test Concentration (%)	Test Solution	Reportable Value (mg/g)
50	1	996.07
50	2	988.43
50	3	995.90
100	4	987.22
100	5	990.53
100	6	999.39
150	7	996.33
150	8	993.67
150	9	987.76
Sample me	an (Y)	992.81
Sample standard	deviation (S)	4.44

USP Education

usp

17

For the standard deviation, one is concerned with only the $100(1 - \alpha)\%$ upper confidence bound since typically, it needs to be shown that the standard deviation is not too large.

 $U = S_{\sqrt{\frac{n-1}{\chi^2_{\alpha;n-1}}}}$

Where, $U = \text{an upper } 100(1 - \alpha)\%$ confidence bound for σ

S = Standard Deviation from Int. precision

n = number of reportable values

From the data:

If S = 4.44, $\alpha = 0.05$ and n = 9,

then
$$\chi^2_{0.05;8} = 2.73$$

$$U = 4.44 \sqrt{\frac{9-1}{2.73}} = 7.60 \text{ mg/g}.$$

Conclusion:

Suppose the pre-defined acceptance criterion for precision requires σ to be < 20 mg/g. The computed upper bound of 7.60 mg/g in equation represents the largest value we expect for σ with 95% confidence.

7.60 mg/g is < 20 mg/g, precision has been successfully validated with a confidence of 95%.

 α = Significance value (It is the maximum acceptable level of risk)

 $\chi^2_{0.05;8} = 2.73$ the value is obtained from the Chi square distribution table.

σ = Standard deviation for population

USP Education

The **closeness** of the test result obtained by the method to a value that is accepted as conventionally **true value** or **as a Reference value**.

Recommendations:

Accuracy should be evaluated using a minimum 9 determinations over minimum 3 concentration levels (3 concentrations /3 replicates) from LOQ to 120% of specification.

USP Education

© 2018 USF

Assessment

Assessment of accuracy can be accomplished in a variety of ways -

- Evaluating the recovery of the analyte (% recovery) across the range of the assay,
- Evaluating the linearity of the relationship between amount found and amount added

The statistically preferred criterion is that In the confidence interval for the **slope** be contained in an interval around 1.0, or alternatively, that the slope be close to 1.0. either case, the interval or the definition of closeness should be specified in the validation protocol.

Note: An unbiased analysis has slope of 1 and an intercept of zero.

General acceptance criteria

The acceptance criteria for the recovery of the accuracy samples are usually based on an acceptable range for the mean

Recovery of the accuracy samples:

- > Assay : Between 98 to 102%
- > Impurities : Between 90 to 110%

USO

From linear regression of actual concentration (amount added) v/s estimated amount (amount found), then the acceptance criteria may be based on the slope and intercept.

> Assay :

- Slope between 0.98 to 1.02
- 95% CI should include 1

> Impurities :

- Slope between 0.9 to 1.1
- 95% CI should include 1

USP Education

USP <1010> and <1210> STATISTICAL TOOLS FOR PROCEDURE VALIDATION

Accuracy Case Study

Recovery of impurity 1:

Amount added (mg)	Amound observed (mg)	Recovered
24.35	24.70	101.4%
25.15	25.41	101.0%
25.15	25.17	100.1%
30.04	30.79	102.5%
29.74	30.18	101.5%
30.14	30.38	100.8%
35.33	35.70	101.0%
34.63	34.56	99.8%
36.73	37.01	100.8%
	Mean:	101.0%
	SD:	0.7945

Typical acceptance criteria:

- Mean Recovery
- Individual recovery
- Regression analysis of known vs estimated
 - Slope within 0.9-1.1
 - 95% confidence interval of slope includes 1

Accuracy Case Study

Recovery of impurity 2:

mount added (mg)	Amound observed (mg)	% Recovery	
24.35	24.70	101.43	
25.15	23.92	95.11	R
25.15	25.17	100.08	
30.04	30.79	102.50	
29.74	28.82	96.91	
30.14	30.38	100.80	
35.33	33.90	95.95	
34.63	33.10	95.58	
36.73	35.12	95.63	
	Mean	98.22	

Typical acceptance criteria:

- Mean Recovery
- Individual recovery
- Regression analysis of known vs estimated
 - Slope within 0.9-1.1
 - 95% confidence interval of slope includes 1

USP Education

© 2018 USP

23

Statistical analysis to estimate Accuracy

Comparison of the accuracy of procedures provides information useful in determining if the new procedure is equivalent, on the average, to the current procedure.

A simple method for making this comparison is by calculating a confidence interval for the difference in true means.

Difference = Mean of alternative procedure – Mean of current procedure

This approach is often referred to as TOST (two one sided t-test)

Conclusion:

If the confidence interval falls entirely within this acceptable range, then the two procedures can be considered equivalent.

USP Education

Ref: USP <1010> Analytical data- Interpretation and treatment and USP <1210> Statistical tools for procedure validation

Case Study-3 : Confidence Interval on Bias

Statistical analysis to estimate Accuracy

Three different quantities of reference standard were weighted to correspond to three different percentages of the test concentrations: 50%, 100%, and 150%.

The value of τ is 1000 mg/g for all three concentrations. The computed statistics from the validation data set include the sample mean (Y), the sample standard deviation (S), and the number of reportable values (n).

Test Concentration (%)	Test Solution	Reportable Value (mg/g)
50	1	996.07
50	2	988.43
50	3	995.90
100	4	987.22
100	5	990.53
100	6	999.39
150	7	996.33
150	8	993.67
150	9	987.76
Sample me	an (Y)	992.81
Sample standard	deviation (S)	4.44

USP Education

Case Study-3 : Confidence Interval on Bias

Set the confidence interval at 90% because it is equivalent to a 95% Two One-Sided Test (TOST)

A 100 $(1-2\alpha)$ % two-sided confidence interval for the bias (β) is:

 $(\bar{Y} - \tau) \pm t_{1-\alpha;n-1} \frac{S}{\sqrt{n}}$

where,

- $\beta = 100(1 2\alpha)\%$ two-sided confidence interval of bias
- S =std dev from int. precision
- n = number of reportable values

 $t_{1-\alpha;n-1}$ = the percentile of a central t- distribution with area 1- α to the left and n-1 degree of freedom

From the data:

If
$$\tau$$
=1000, S=4.44, \overline{Y} =992.81

 $\alpha = 0.05 \text{ and } n = 9,$

then $t_{0.95;8} = 1.860$

The 90% confidence interval on β is: $(\bar{Y} - \tau) \pm t_{1-\alpha;n-1} \frac{S}{\sqrt{n}}$ (992.81 - 1000) $\pm 1.86 \frac{4.44}{\sqrt{9}}$ [-9.94 to - 4.44] mg/g

Conclusion:

The accuracy requirement is validated if evidence demonstrates that the absolute value of β is NMT 15 mg/g.

Since the computed confidence interval from -9.94 to -4.44 mg/g falls entirely within the range from -15 to +15 mg/g, the bias criterion is satisfied.

The linearity of an analytical procedure is its ability to elicit test results that are **directly**, or by a well-defined mathematical transformation, **proportional to the concentration** of analyte in samples within a given range

Typical concentrations:

- For the assay of a drug substance or a finished (drug) product: normally from 80 to 120 percent of the test concentration
- For impurities, reporting level (LOQ) of impurity to 120% of the specification
- For content uniformity, covering a minimum of 70 to 130 percent of the test concentration
- For dissolution testing: +/-20 % over the specified range

Note: ICH recommends minimum of five (05) concentrations

Regression Plot

The linear relationship between the analyte response and the corresponding concentration is evaluated by statistical or mathematical approach. One common procedure is the generation of **regression plot using the least squares method** and calculation of the correlation coefficient (*r*).

The acceptance criteria should balance scientific rigor with practical needs

- Minimum *r* and *r*² value- ≥ 0.99 up to ≥ 0.9999
- Y intercept- statistically insignificant, within n% of the response of the standard solution.

Regression Analysis

The correlation coefficient (r)

The strength of the relationship is quantified by the Correlation Coefficient, or Pearson Correlation Coefficient. It can range from -1 to +1.

80

If there is no correlation, the coefficient is zero, or close to zero.

It is important to understand that the correlation coefficient is not a measure of linearity but rather a measure of how well the data fits the model.

USP Education

80

Regression Analysis

It is equivalent to the ratio of the regression SS and total SS and thus is an expression of how much variability in the response is fitted by the regression.

$$r^2 = \frac{R}{2}$$

Where

- **Regression sum of squares** is the amount of variability in the response
- Total sum of squares is the sum of squares explained by the regression line + sum of squares not explained by the regression line i.e. residual sum of squares.

 r^2 = 0.969 means that 96.9% of variation in observed values is explained by the equation.

Ideally, r^2 should be equal to one, which would indicate zero error.

Significance of Intercept:

95% confidence interval of intercept includes zero

Option 1

Option 2

Intercept: It is the value of y when x = 0

• If 95% confidence intervals includes zero, the true intercept can also be assumed to be zero and a single point calibration is justified.

% y-intercept should be statistically insignificant

An alternative approach is to express the intercept as a % of the analytical response at the target concentration for e.g. 100% concentration level in the assay.

- If the % intercept is not significant, then single point calibration may be used.
- If the % intercept value is not negligible, then multilevel calibration is normally used.

% intercept = $\frac{y - intercept \times 100}{\text{Response at }100\%}$

General Limits:
> Assay : ± 2%
> Impurities : ± 5%

USP Education

Homoscedasticity and Heteroscedasticity :

Homoscedasticity is the term for calibration data having about equal variability over the whole calibration range.

If the data's variability changes from one end of the range to the other the data is called to be **Heteroscedastic**.

In some cases, to attain linearity, the concentration and/or the measurement may be transformed.

The weighting factors used in the regression analysis may change when a transformation is applied.

32 © 2019 USP

Transformation may be performed to the response data as well as to the concentration data.

Common choices for a transformation of the response include, but not limited to,

- Log
- Natural Log
- Square root
- Reciprocal

USP Education

Ref: USP <1032> Design and Development of Biological assay

Residuals:

Residual:

The distance in the y-direction from the point to the regression line.

Deviation of an observed data point (y) from the corresponding predicted data point (\hat{y})

Each residual : $y - \hat{y}$

USP Education

Regression analysis:

Sr. No	Conc.	Area
	0.050	1250
1	0.050	1260
	0.050	1155
	0.105	2625
2	0.105	2550
	0.105	2700
	0.120	3000
3	0.120	3150
	0.120	3090
	0.150	3750
4	0.150	3800
	0.150	3755
	0.175	4375
5	0.175	4402
	0.175	4450
	0.250	6250
6	0.250	6311
	0.250	6288

USP Education

Ref: Graph is generated by using Minitab

Case study- 4 cont..

SUMMARY OUTPUT

Regression Statistics						
Multiple R	0.999419737					
R Square	0.998839811					
Adjusted R Square	0.998767299					
Standard Error	56.67013031					
Observations	18					
Multiple R R Square Adjusted R Square Standard Error Observations	0.999419737 0.998839811 0.998767299 56.67013031 18					

ANOVA

	df	SS	MS	F	Significance F
Regression	1	44238000.44	44238000.44	13774.85595	6.4499E-25
Residual	16	51384.05872	3211.50367		
Total	17	44289384.5			

	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%
Intercept	-12.22610471	33.2736504	-0.36744104	0.718105085	-82.76309252	58.31088311
X Variable 1 (slope)	25247.47839	215.1168729	117.3663323	6.450E-25	24791.45099	25703.50579

Typical acceptance criteria:

- Valid calibration model e.g. r and r²
- Residual plots shows random scatter and no systematic trends
- 95% confidence interval of intercept includes zero

USP Education

USD

Equation (y=mx+c): 25247x -12.23 Intercept (c) = -12.23 (The value of y when x=0) Standard Error, (SE intercept) = 33.27 95% CI of SE (intercept)= -82.76 to 58.31 Slope (m) = 25247 Standard error (SE of slope) = 215.11 95% CI of SE (slope) = 24791 to 25703 Coefficient of determination (r²)=0.9988 Correlation coefficient (r)= 0.9994 (This will be between 0 to 1, the closure the value 1, the better the correlation) Regression SS = 44238000(Regression sum of squares is the amount of variability in the response) Residual SS = 51384(Residual sum of squares is the variability about regression line, the amount of uncertainty remains) Total SS = 44289384(The total sum of squares is the total amount of variability in the response)

36

Case study – 4 cont..

Regression analysis:

USP Education

- Normal probability plot: To verify the assumption that the residuals are normally distributed
- Histogram: To determine whether the data are skewed or whether outliers exist in the data
- Versus Fits: To verify the assumption that the residuals have a constant variance
- Versus Order: To verify the assumption that the residuals are uncorrelated with each other

37

Questions

Empowering a healthy tomorrow

Thank You

Empowering a healthy tomorrow