

Technological Innovation in Manufacturing

Thomas O'Connor, Ph.D.

Office of Pharmaceutical Quality US FDA Center for Drug Evaluation and Research

IPA 5th Advanced GMP Workshop

November 5th, 2020

This presentation reflects the views of the authors and should not be construed to represent FDA's views or policies.

A quality product of any kind consistently meets the expectations of the user.

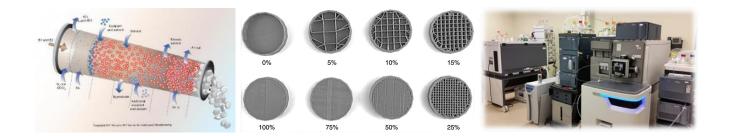
A quality product of any kind consistently meets the expectations of the user.

Drugs are no different.

Patients expect safe and effective medicine with every dose they take.

Pharmaceutical quality is

assuring *every* dose is safe and effective, free of contamination and defects.



It is what gives patients confidence in their *next* dose of medicine.

www.fda.gov

What is Advanced Manufacturing?

- Novel manufacturing methods to improve process robustness and efficiency
- Novel dosage forms or delivery systems to improve drug delivery and targeting
- Novel analytical tools to improve product quality testing, process monitoring and/or control

Advanced Manufacturing

FDA

Our vision is to achieve "a maximally efficient, agile, flexible pharmaceutical manufacturing sector that reliably produces high quality drugs without extensive regulatory oversight." *Janet Woodcock MD, Director, CDER FDA*

Advanced manufacturing can improve drug manufacturing and help ensure that quality medicine is available.

Produce better quality medicine. A transition to advanced manufacturing technology can facilitate operation above a six-sigma level, meaning manufacturers would see no more than 3.4 defects per million opportunities.

Ō

Develop drugs rapidly. Advanced manufacturing technology speed the development novel or patient-focused therapeutics (e.g., orphan drugs, oncology drugs, breakthrough therapies).

Prevent drug shortages. FDA found 62% of drug shortages were associated with manufacturing or quality problems. Advanced manufacturing can proactively reduce today's quality-related manufacturing issues.

()

Improve emergency preparedness. More agile and flexible manufacturing technology can help manufacturers pivot quickly to address unanticipated demands in a public health emergency.

CDER Efforts in Advanced Manufacturing Emerging Technology Program

US FDA Center for Drug Evaluation and Research

Encourage and support the adoption of **innovative technology** to modernize pharmaceutical **development and manufacturing** through **close collaboration** with

industry and other relevant stakeholders FD/

A small **cross-functional** Emerging Technology Team (ETT) with representation from all relevant FDA **quality assessment and inspection** programs (CDER/OPQ, CDER/OC & ORA) FD/

Program Objectives

13

ETT Collaborative Approach

Over the course of an ETP project, ETT may employ a combination of early engagement, ET site visits, integrated quality assessments or Pre-Approval Inspections

The same ETT representative(s) will be involved in the entire process

The composition of an assessment team will likely remain the same throughout the entire process

FDA

Progress in Emerging Technology

Approval of a first regulatory application utilizing 3D printing technologies Approvals of applications utilizing continuous

manufacturing (CM)

- Small molecule drug product and drug substance
- · Automated semi-continuous sterile manufacturing

Requests accepted to the ET program since launching in late 2014

 Received over 100 ETT proposals and accepted ~50% of these proposals to the program

Getting Ready for ETT Meetings

Regulatory Agencies

- Willing to learn / understand and recognize potential of new technologies with an open mind
- Make science- and riskbased assessments and decisions
- Be transparent to industry and not afraid to ask questions
- Multi-disciplinary approach (collaborative)

Industry

- Be transparent and willing to share with the agency early
- Not afraid to receive and answer many questions from the agency
- View regulators as part of your team

FDA

For ETT Activities visit the ETP website:

https://www.fda.gov/AboutFDA/CentersOffices/Officeof MedicalProductsandTobacco/CDER/ucm523228.htm

FDA Experience: Emerging Technologies

- CM of drug substance
- CM of drug product
- End-to-end CM

Small

Molecules

- Pharmacy-on-demand
- Model-based control strategy for continuous manufacturing
- Continuous aseptic spray drying
- 3D printing manufacturing
- Ultra long-acting oral formulation

FDA Experience: Emerging Technologies

- Controlled ice nucleation for lyophilization processes
- Comprehensive product testing using a single multi-attribute assay (multi-attribute method)
- Continuous manufacturing for a downstream process
- End-to-end integrated bioprocess

Biological

Molecules

 Pharmacy on demand (small manufacturing platform for continuous bioprocesses)

FDA Experience: Emerging Technologies

- Distributed Manufacturing
- Closed aseptic filling system
- Isolator and robotic arm for aseptic filling
- Novel container and closure system for injectable products

Multiple Technologies

FDA Science and Research Activities: Emerging Technology

OPQ Science and Research

Process modeling and simulation Multi-attribute methods Controlled ice nucleation Characterization of novel glass designs In-house laboratory capability for advanced manufacturing technologies High throughput analytical approaches Emerging Therapies (oligonucleotides)

Emerging Technology Program:

- 1) Continuous Manufacturing
- 2) Industry 4.0: Advanced Process Control and Modeling
- 3) Distributed Manufacturing

Continuous Manufacturing

CDER approved six applications utilizing continuous manufacturing for finished c NH₂ Itilizing it for a top-sellin : injectable Standard: DA draft BnO prmulated guidance, iPrMgCI 'OBn BnO Continuo ty in unit operatior^{BnO} ✓ Exothermic reagent additions ✓ Single temperature zone 'OBn Manufact Remdesivir BnÒ ✓ Precipitation avoided ✓ <1 min residence time ______s flow reactors) – Isolatec.

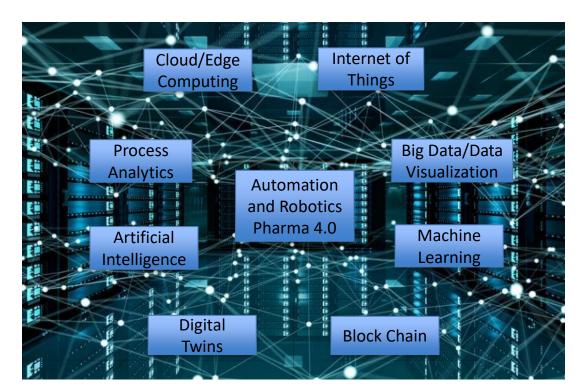
Continuous Flow C-Glycosylation via Metal-Halogen Exchange: Process Understanding and Improvements toward Efficient Manufacturing of Remdesivir

- Org. Process Res. Dev. 2020, 24, 2362-2368
 - Better synthetic routes, and new capabilities
 - Improved Health, Safety, and Environmental performance

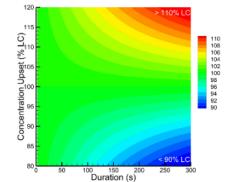
Continuous Synthetic API Manufacturing

- Telescoped reactions
 - Can lead to complex reactions with many different species in the mixture
- Integrated process lines often contain surge capacity that ٠ decouple segment of the process train
- Process monitoring approach is a common ETT-Industry discussion area
 - In process controls may combine process parameter limits with a specified duration (e.g. outside of +/-10% for 20s)
 - Specify context of use of PAT in the control strategy
- Process robustness: solids may be present in the reaction as reagents, intermediates, byproducts, or as the product causing process disruptions

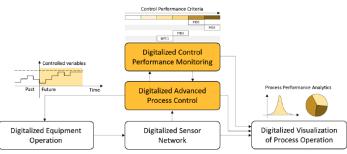
Vapourtec Flow


Chemistry System

Emerging Digital Tools and Technologies in Pharmaceutical Drug Manufacturing



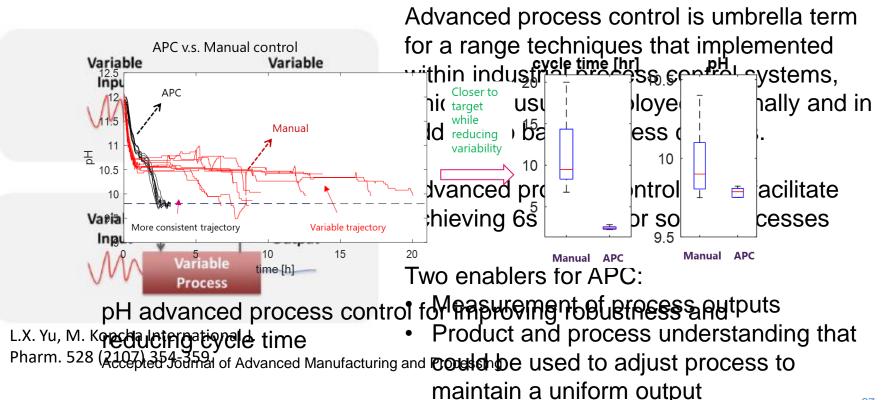
What is the Scope for Product Quality?



Digital Twins: Modeling and Simulation

- Advanced manufacturing a potential driving force for utilization of process modeling
- Modeling approaches evolving in the pharmaceutical industry (e.g. digital twins)
- Models can facilitate risk assessment, improve process design, and improve process performance through online monitoring and control
 - Predictive models have appeared in regulatory submissions
 - FDA has developed internal process modeling and simulation capability
- Technology Specific Considerations
 - Model categorization considering purpose, impact and risk
 - Exploring utility of risk-based model validation assessment frameworks
 - Model maintenance plans over product lifecycle

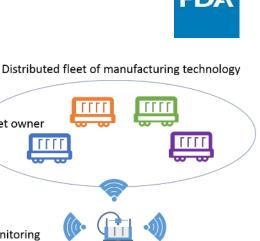
Models for In-Process Control



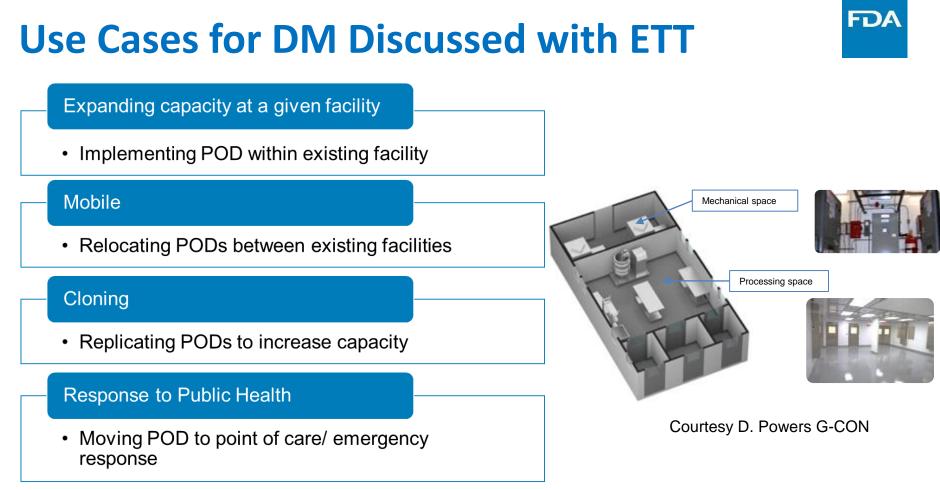
Digital Twins 26

https://doi.org/10.1016/j.compchemeng.2019.06.033

Courtesy of Prof. lerapetritou, University Delaware


Advanced Process Control (APC)

FDA


Distributed Manufacturing (DM)

- Distributed Manufacturing (DM): is a decentralized manufacturing platform that is coordinated by one management, is mobile, and can be deployed to multiple locations.
 - DM typically comprises of pre-fabricated, mobile, modular manufacturing/testing units
 - Oversight is established by centralized QA, execution of manufacturing occurs where the unit is deployed

Fleet owner

Acknowledgements

Thank You!