

Quality 4.0 – The Future of Quality in Pharma

CONFIDENTIAL AND PROPRIETARY Any use of this material without specific permission of McKinsey & Company is strictly prohibited

Matthias Spiegl Associate Partner McKinsey's Hamburg office

Lead two digital transformations to WEF lighthouse sites

Passionate about Advanced Analytics is Pharma Operations

Background in automotive operations and academic physics

Digitization is transforming our world...

By 2020, there will be **21 billion**

connected devices in a global Internet of Things, producing an everincreasing amount of data

90%

of the world's data today has been created in the last 2 years only

Each day we create **2,500,000,000,000,000**

(2.5 quintillion) bytes of data. This would fill 10 million Blu-ray discs, the height of which, stacked, would equal the height of 4 Eiffel towers

The limits of what's possible are continuously moving

The vision

How would Amazon redefine pharma quality operations?

Digital & Analytics will drive a paradigm shift in Quality towards real-time release

Digitally enabled quality operations

Examples

Digitally enabled quality operations

Quality control operations supported by advanced 4.0 tools

"Efficient testing"

IOT- enabled data transcription

Digital twin QC

scheduling

Automation & robotics

Many innovative technologies also emerge in quality operations

Digital twin scheduling enables a step change in Quality control productivity

SCHEDULER						
K BACK TO LIBRAR	RY .				SCHEDULING INPUTS RESOU	video to be added
Mod.	1 - DRAFT V	٢.10	WEEK 42		Save as new draft Publish	Unscheduled steps
	15 - MONDAY	16 - TUESDAY	17 - WEDNESDAY	18 - THURSDAY	19 - FRIDAY	Evovinavi 1, Omnicil 0,5 - Disso_machine step 1
Beverly H.	Omnicil 0,5 MG Disso S153	Omnicil 0,5 MG Disso_machine, Disso \$1078, \$153	Omnicil 0.5 MG Disso_machine, Disso \$1089, \$153	Omnicil 0,5 MG Disso_machine, Disso S1078, S153	Omnicil 0,5 MG Disso_machine, Disso S1089, S153	Deadline: 20.04.2018
Debra R.	Validation \$1065					Unscheduled batches
Howard B.	Validation S1070	Caryxrun 1MG HPLC - PD S261	C Tracilgan 0.2G H Disso S S1068	Caryxrun 1MG HPLC - PD S170	C Caryxrun 1MG H Disso S S176	Exodricy 10 MG - Production
Kevin H.		Caryxrun 1MG Disso S178	Caryxrun 1MG Disso S178	Training S1011	Training S1011	Test types: HPLC/Assay
Amy L.	Sageneilt 500 MG HPLC/Assay 5128	Sageneilt 500 MG HPLC/Assay 5128	Tracilgan 0,2G HPLC/Assay S128	Tracilgan 0.2G HPLC/Assay S128	Tracilgan 0,2G HPLC/Assay S128	Omnicil 0,5 MG - Production : Quantity: 3 Test types: HPLC/Assay
Keith C.	Sageneilt 500 MG TI - FE TI-FE	Sageneilt 500 MG TI - FE TI-FE	Sageneilt 500 MG TI - FE Ti-FE	Sageneilt 500 MG TI - FE TI-FE	Tracilgan 0.2G Disso S1067	
Catherine P.					Validation S1011	Caryxrun 1MG - Production
Henry K.	Validation S178	Caryxrun 1MG Disso S176	Caryxrun 1MG Disso S176	Caryxrun 1MG Disso S178	Caryxrun 1MG Disso S178	Test types: HPLC/Assay, Disso_machine, HPLC - PD
Lawrence G.	Sageneilt 500 MG Disso S1067	Sageneilt 500 MG Disso S1067	Exodricy 10 MG Disso S1065	Exodricy 10 MG Disso S1065		Tracilgan 0,2G - Production
Angela R.	Omnicil 0,5 MG HPLC/Assay	C Omnicil 0.5 MG F HPLC/Assay	C Caryxrun 1MG E Disso	Caryxrun 1MG HPLC - PD	C H	Test types: Water, TI - FE

Augmented/assisted reality is a great tool to optimize standard times, and strengthen process robustness

20 Pulire gli scivoli... 🕲 💵 📣 Mostra Aiuto

Smontare la parte in plexiglass che copre gli scivoli, pulire gli scivoli e la parte in plexiglass secondo SOP000

Augmented/assisted reality helps

Reduce standard times through highly efficient performance dialogs on task level

Ensure fast best practice transfer and consistent quality

Train new employees quickly

Advanced Analytics based Product Mastery

Advanced analytics opens new paths to understand and reduce quality deviations

Machine learning algorithms identify significant drivers of deviations...

Model coefficient per variable – Primary Recovery Complexity Feature 1 0,38 0,14 Feature 2 Feature 3 0,14 Feature 4 -0,30 0,21 Feature 5 Feature 6 0,17 -0,16 Feature 7 Equipment Feature 8 0,15 Feature 9 -0,09 Feature 10 -0,16 Feature 11 -0,20 Materials 0,18 Feature 12 Feature 13 0,18 Feature 15 0,19 0,20 Feature 16 Feature 17 0,14 Feature 18 0,06 Feature 19 0,12 -0,20 People Feature 20 Feature 21 -0,19 0 Feature 22 Reduce risk of deviation Increase risk of deviation

Not significant Significant

... and uncovers previously unknown product and process behaviors

Insight 1: Consuming media that has been stored for a shorter period of time (median less than 2 days) leads to more deviations

pH decreases more slowly (less risk of deviation), when older media are used.

Insight 2: The relative difference between output and input of stage 3 is higher for lower column loading, leading to yield deviations

Currently 20% batches below (85% loading) can be eliminated by adding more harvest

Automation of deviation investigation process leveraging AI

Real time release

Quality outcome prediction leveraging Advanced analtyics

Advanced predictive modelling of assay results

IPC test QC test Environment Process par. Raw material Understanding of key model drivers can be leveraged to increase process capability **Drivers**, relative importance in % Uniformity of dosage 11 10 Minimum thickness Dissolution 9 Water content of granules 9 Total time granulation 7 Yield after granulation 7 Assay of raw material API 5 5 Disintegration Average weight of tablet 5 Yield after compression 4 Weight of raw material 4 . . .

Product Mastery ≡

🔤 Product Mastery

E Logout

Input section

25 -

_

0 1 2

Output section Start computation Sample size * 1000 Prob of Assay outside spec.: 0

Video to be added

Active

Active

Distributed quality control sets the basis for AI enabled real-time product release

The opportunity is substantial

More than half of companies have not started pilots yet, and risk tolerance or aversion has not made a difference to progress Companies, n=13

How to make this a success

Make it a business opportunity, not a technology problem. Keep your eye on the **business value**.

This is an **innovation** project which should have a vision – not just pilots

Give innovation a home – lighthouse, CoE

Make Quality digitization strategy a **cross-functional exercise** – lead by quality, but involving R&D, production, IT,...

Build an **IT architecture** strategy, but don't "boil the data lake"...

0	0	0
	╢	

Understand the '**digital skill and resources'** you need to build over the next years. AND define the new operating model.

...and do not forget the change management!

BACKUP

Thanks to digitization and technology advancements, 60% of operational tasks can be automated

Time spent in manufacturing on activities that can be automated by adapting current technology %

Digitization and automation will transform quality control work in the lab and on shop floor by introducing new ways of working

