

OEL DRIVEN FACILITY DESIGN

By Mr. Vishant Naik

Director, Arnita Consultants Pvt. Ltd.

About Arnita Consultants

Arnita Consultants Pvt. Ltd. embodies a brand that is professional, reciprocative and solution-oriented. With over three decades of experience, the company communicates a deep commitment to innovation and quality across its multidisciplinary engineering services.

We at Arnita are confident in our technical knowledge base stemming from experience of more than **500+ completed projects**, reflecting expertise in sectors like pharmaceuticals, biotechnology, and industrial infrastructure. We emphasize precision, regulatory compliance, and sustainable design, aiming to inspire trust among clients and stakeholders.

With a collaborative approach and adherence to international standards, Arnita positions itself as a reliable partner for complex, large-scale projects.

OEL DRIVEN FACILITY DESIGN

Protection of Product, Operator and Environment

ABOUT OEL

OEL (Also known as OEB/HHC)

Occupational Exposure Limit.

Measured as: µg/day

OEL Categories

Category	OEL	Effect
G 4	$< 1 \mu g/m^3$	very high pharmacologic and toxic effect
G 3b	$< 10 \mu g/m^3$	high pharmacologic and toxic effect
G 3a	$< 100 \mu g/m^3$	Medium pharmacologic and toxic effect
G 2	< 1000 μg/m ³	low pharmacologic and toxic effect
G 1	≥ 1000 μ g/m ³	very low pharmacologic and toxic effect

OEL FACILITIES

Advanced GMP

- The category from 4 to 5 or to some extent level 3.
- High Potent facilities or Containment facilities

Some of the Aspects of Facility Design

- 1. Building Concept / Concept Development
- 2. Environmental Protection
- 3. Clean rooms
- 4. Waste handling
- 5. Operator Protection

1. Data Collection

The basis for Concept development is user requirements in terms of :

- a. Dosage form
- b. Volume/ output intended annual/ monthly/ daily
- c. Process steps in the form process flow diagram
- d. OEL based on the potency of substance(s)
- e. HSE requirements
- f. Land size

2. Layout planning

- Inside to outside concept
- Equipment selection
- Space qualification

3. Selection of Containment

Primary Containment:

- 1. Production Equipment
- 2. Material handling/ Cleaning
- 3. Exhaust System

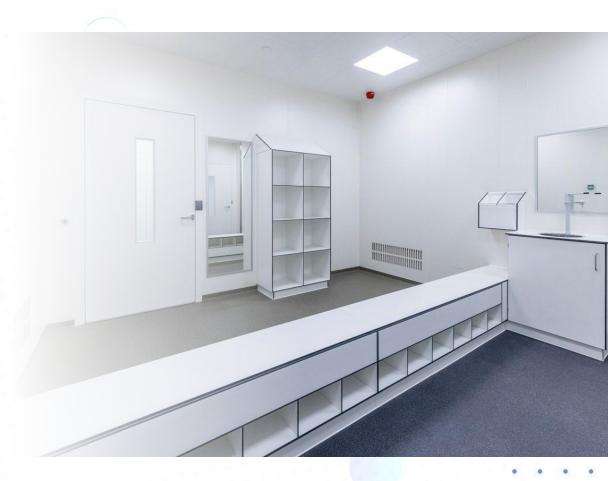
Secondary Containment:

- 4. Clean rooms
- 5. Air locks
- 6. Pressure gradient

3. Selection of Containment

Primary Containment:

- A. Isolators
- B. Material Transfer System
 - Drum Docking System
 - Rapid Transfer Ports (RTP)
 - Split Valves System
- C. Safety Cabinet

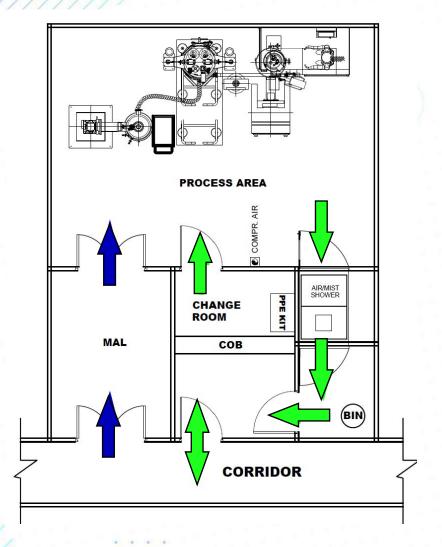


3. Selection of Containment

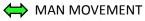
Secondary Containment:

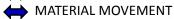
- a. Room concept
- b. Flow of material
- c. Flow of personnel
- d. Room layout
- e. Pressure gradient
- f. Air locks
- g. Emergency concept
- h. Decontamination
- i. Movement of Dirty Equipment
- j. Waste disposal

ROOM CONCEPT

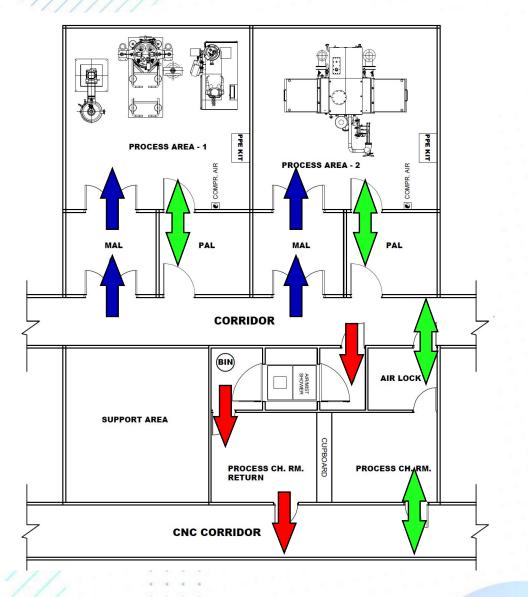


- Process Equipment
- Material handling
- Operation space
- o PPE
- o Breathable air supply
- Escape route





LEGEND

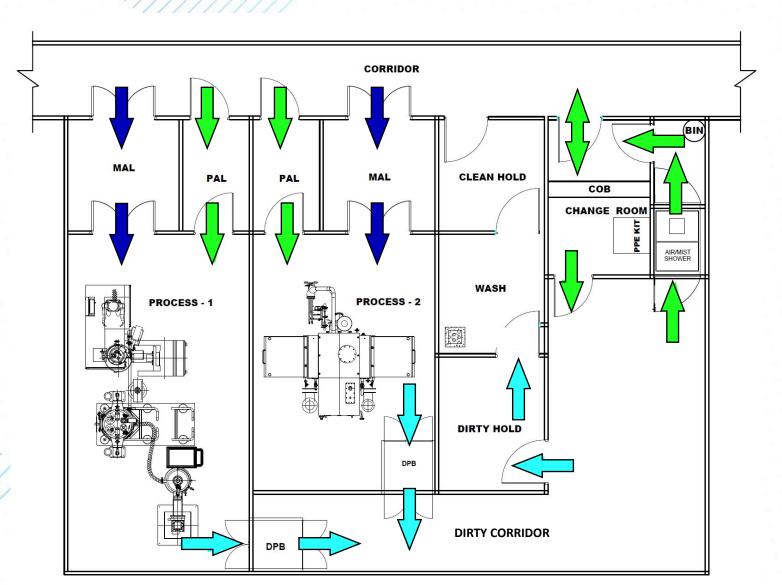


OPEN HANDLING

LEGEND

★ MAN MOVEMENT

MATERIAL MOVEMENT


EMERGENCY MAN MOVEMENT

TYPICAL ROOM LAYOUT

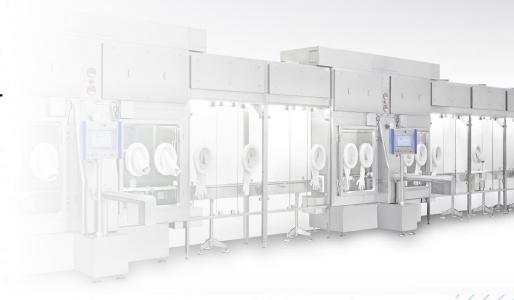
LEGEND

MAN MOVEMENT

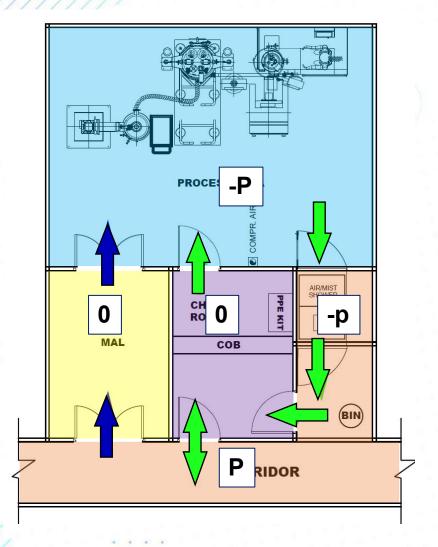
MATERIAL MOVEMENT

DIRTY EQUIPMENT MOVEMENT

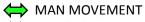
MOVEMENT OF DIRTY EQUIPMENT



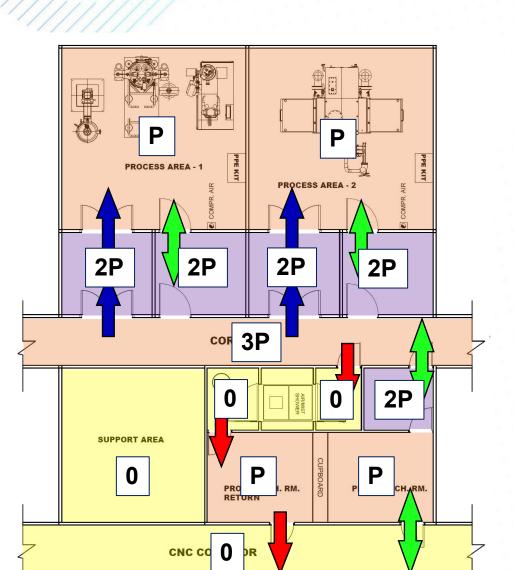
ENVIRONMENTAL PROTECTION


1. Pressure Cascade Concept

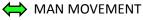
- Negative pressure in Workspaces.
- Maintain constant negative pressure and validate 24/7.



LEGEND



OPEN HANDLING



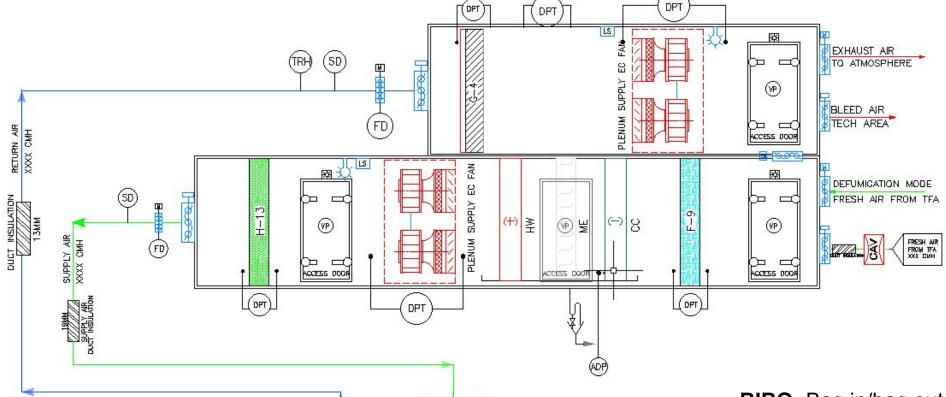
TYPICAL ZONING DIAGRAM

LEGEND

ENVIRONMENTAL PROTECTION

Advanced GMP

- Local Extraction Ventilation
- Filter Change Protocol (BIBO)
- System Interlocks
- Construction of ventilation system
- Airflow Isolation
- Exhaust System Requirements
- Pressure Control
- Safety Measures



TYPICAL AIR FLOW DIAGRAM FOR CONTAINMENT FACILITY

NMT 25° NMT 60%

200

TEMP (°C)

PRESSURE (Pa)

- **BIBO** Bag in/bag out
- **VAV** Variable Air Volume
 - CAV- Constant Air Volume

CLEAN ROOMS

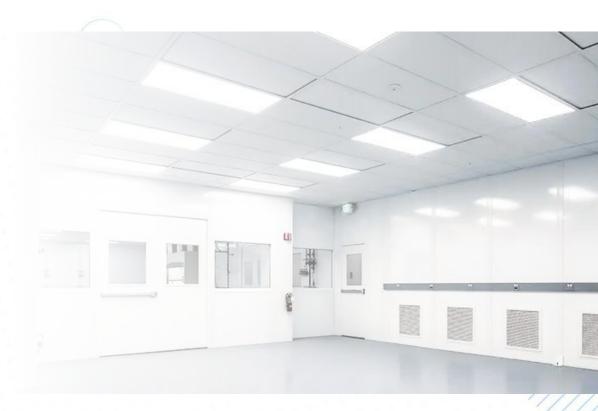
Clean room Classification:

- ISO 8
- ISO 7
- ISO 5

CLEAN ROOMS

2. Construction of Clean rooms:

- Airtight Construction
- Minimized Joints
- Cleanability
- Ceiling Design
- Fixture Integration


CLEAN ROOMS

2. Construction of Clean rooms:

- Ceiling Access
- Filter & Lighting Access
- Minimal Installations
- Accessory Cleaning Protocol
- PPE Air Supply

WASTE HANDLING

1. Solid Waste

2. Liquid Waste

WASTE HANDLING

Handling Of Dirty Equipment/ Waste

- Limit Movement Of Dirty Equipment/ Tools
- Washing Areas Shall Be Close To The Source
- Segregated Path For The Movement Of Dirty Equipment
- Use Of PPE Kits During The Washing Of Contaminated Tools/
 Dirty Equipment
- Use Of Washing Stations To Limit The Exposure To Operator.

DECONTAMINATION

- Solid waste decontamination shall preferably close to the source.
- Decontamination room near dispensing room for decontamination of waste generated post dispensing.
- Waste generated in manufacturing area can be decontaminated in a common room within manufacturing department.
- Liquid waste
- Decontamination method.

OUR TAKE-AWAYS

- OEL
- Containment

Thank you.

- Process Equipment

• Entire life cycle of installation.

- Cleaning
- Repair and Maintenance
- Waste handling
- Decommissioning

