

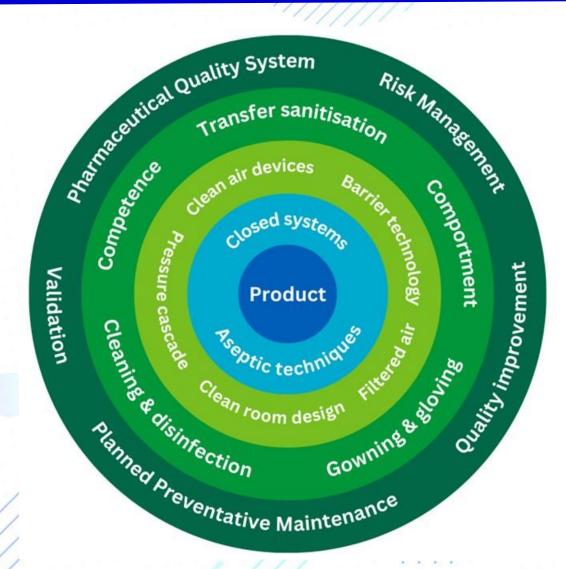
Advanced GMP

Sterility
by
Design

Isolator System

Vikram Shukla

President: Injectables Operations


Zydus LifeScience

Isolator Key for Sterility of the Product

Key focus area to ensure product sterility by design

- Design of Isolator
- Operational Controls
- Cleaning and disinfection
- Decontamination
- Validation
 Operator competency
- Interventions
- Maintenance

Isolator if designed, Operated and maintained well will deliver sterile product

Isolator Design

Isolator System

Vikram Shukla

President: Injectables Operations
Zydus LifeScience

Types of Isolator

There are two major types of aseptic isolators:

Closed isolator

- Closed / sealed during the entire operations
- material transfer via aseptic connection to auxiliary equipment

- Allow for the continuous or semi-continuous ingress and/or egress of materials during operations through one or more openings.
- Openings are engineered (e.g. using continuous overpressure) to exclude the entry of external contaminant into the isolator.

PA Key Design Considerations

Ergonomics/ Diversity

Cleanability

Intervention

First Air

Glove port

Material Transfer mechanism

In closed conditions Piping transitions (Liquid) **Differential Pressure**

DP Control provision Continuous monitoring and alarms **Dynamic VHP**

Automatic during cycle

Temp and Humidity

Control provision Continuous monitoring and alarms CIP / WIP

Based in the need

MOC of all parts within

Hydrogen Peroxide resistant

Computational Fluid Dynamics

Isolator: Key Operational Considerations

Isolator System

Vikram Shukla

President: Injectables Operations
Zydus LifeScience

Is Cleaning and disinfection of Isolator required prior to VHP Decontamination?

Manual Cleaning

Remove residues, spills, and visible contamination

Disinfection

 Apply approved disinfectant (e.g., sporicidal agent)

Drying / Visual Inspection

 Ensure no residual moisture before VHP exposure

HP Decontamination Cycle

Automatic cycle for sporicidal decontamination

Key expectations

All surfaces that that are in **any way** or at **any time** exposed to the critical zone should be sterilized or subjected to a validated sporicidal process. This includes the **resident surfaces** of the isolator and **transient surfaces** of materials moving into and out of the isolator.

Understanding of how gas generator works (Part of training)

Cleaning prior to the Decontamination process.

Critical parameters related to its operation should be identified and recorded throughout the process.

Independent monitor of critical parameter or an assured and confirmed reliability of installed monitors.

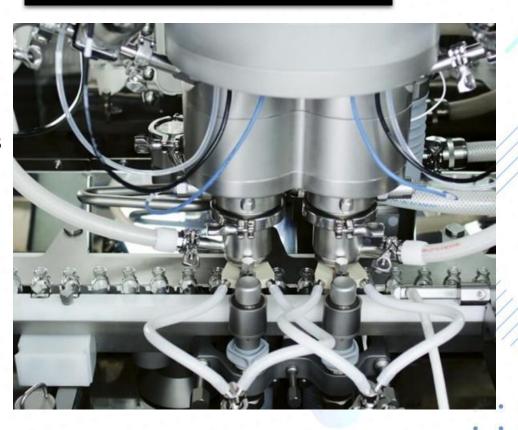
The delivery of the correct gas at the validated concentration to the isolator and/or leaving the exhaust system should be confirmed

Sterilization or decontamination of **cooling zone**.

Cleaning before Decontamination: Key considerations

- Reason for cleaning (Cross contamination, particle etc)
- Cleaning agent
- Ease of cleaning
- Tools for cleaning
- Effect of cleaning material and its residue if any
- Hold time establishment

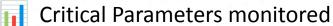
Disinfection before Decontamination: Key considerations


- Unexposed parts To decontamination process
- Complexity, Variability and effectiveness of cleaning process
- Method of disinfection

Key Points

- Quality Risk assessment of Disinfection and Decontamination process
- Pre-VHP Decontamination Bioburden

What are unexposed parts? Does RA identify it and take necessary actions



Decontamination Key considerations

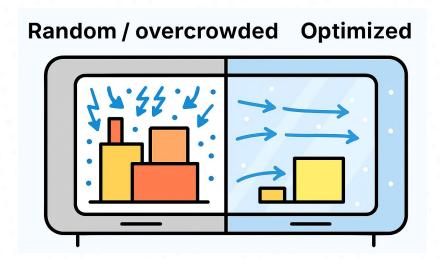
Load pattern

Decontamination

Removal of decontamination agent / Aeration

Walidated

6 Log reduction


Empty chamber – Temp and Humidity studies

Cycle
Development

Cycle
Qualification

Should each load pattern of VHP be qualified?

Is Load pattern important in VHP decontamination?

Decontamination process - Key considerations

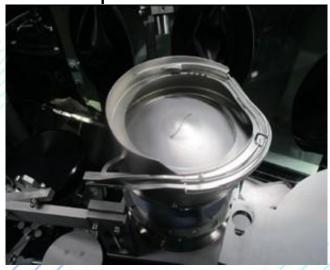
- Environmental condition (Temperature, Humidity range, Variation)
- Fan speed / Blower speed
- Decontamination agent concentration
- Dose level
- Rate of application
- Hold time post VHP decontamination

- Intervention that exposes the surface which is neither sterilized or may not have been decontaminated should be avoided.
- During batch breakdown handling which exposes items should be assessed.
- These interventions should not be simulated to justify

Decontamination process – Load configuration

- Maximum Load
- Minimum Load
- Extensions of gloves
- Position of doors and opening
- RTP ports opening
- Charecteristic of material

Should we know the Bio-load of Isolator and its items before Cleaning or Before Decontamination?



Which is better:

A sterilized In-direct product contact surfaces (E.g. Bowls, Scissors et) installed with the cover

Cover opened after VHP?

Importance of Glove Extenders during VHP - Decontamination

Material Transfer-Loading

Direct Product Contact

E.g. Needles, Product Line, Filters

- CIP / SIP :
- COP, Steam sterilized, Transfer and aseptic assembly post decontamination

Material transfer Criteria:

- Reduce Particulate contamination
- Reduce Microbial contamination risk

Direct Product Contact

Rubber stoppers, Tubs-Vials or PFS

Rubber Stoppers

- Steam sterilized Transfer Decontamination (Integrity of wrapping)
- RTU Transfer via RTP
- RTS Steam sterilized Transfer via RTP
- Inhouse stopper processing
 - Wash RTP bags Steam sterilized Transfer via RTP
 - Automatic processor Transfer via RTP

Tubs

- E-Beam
- VHP Passbox

Key Points

- Risk assessment of transfer of material
- Packaging material (Integrity, VHP ingress, VHP compatibility,

Control of Packaging material

Material Transfer-Loading: Operational Key Points

Indirect Product Contact

E.g. Stopper bowl, Tracks etc.

05

01

Steam sterilized and aseptically transferred via RTP port decontamination (Integrity of wrapping)

Steam sterilized -Transfer - assembled -**Opened during** decontamination

04

Sanitized -**Installed-Open during** decontamination.

Assembled / Not assembled -**Opened post decontamination** (Integrity of wrapping)

Options 02 Steam sterilized - Transfer -**Ø**

Key Points

- Risk assessment of transfer of material
- Packaging material (Integrity, VHP ingress, VHP compatibility,

Material Transfer-Loading

Sterility Assurance & Risk Management

- Validated decontamination of RTP surfaces and containers.
- **Double-bagging** and **protective sleeves** for sterile items.
- Inclusion in APS for realistic risk evaluation.

Material Transfer Risks

- Bag integrity must be inspected before transfer.
- Sharp tools or fingernails can pierce gloves or RTP seals.
- Sunlight exposure can degrade glove and seal materials over time.

Design & Ergonomic Risks

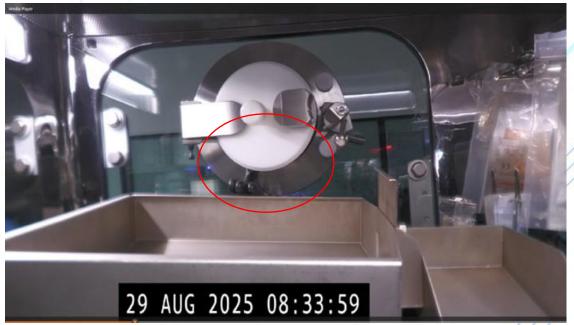
- Poor glove port positioning can lead to awkward handling, increasing contamination risk.
- Crowding of materials near RTP can block airflow and decontamination vapor distribution.
- Excessive reaching/stretching during RTP operations may compromise aseptic technique.

Seal-Related Risks

- Inadequate sealing between RTP α-port and β-container can compromise sterility.
- Seal wear or damage due to repeated use, poor alignment

Airflow & Decontamination Risks

- RTP operations may disrupt unidirectional airflow, especially near exposed sterile product.
- Turbulent airflow caused by rapid movements or poor layout can spread contamination.
- Unexposed surfaces during VHP cycles (e.g., behind seals, under bags, or obstructed areas) may retain microbial load.


Material Transfer-Loading

Difficult to access the RTP port during material transfer

Poor design of glove port to access RTP port

Any specific requirements for personnel working in Isolator for gowning (Grade C and when Isolator is open)?

Should garments be "Sanitized" or "Steamed" or "Sterilized" when working in Isolator?

Should garments be monitored for Bio load when working in Isolator?

Are goggles required in Grade C when working in Isoaltor?

Should gloves be sanitized before entering the gloved hand in Isolator glove?

Are Sterile gloves (Non Isolator gloves) required when working inside isolator (When open before VHP)?

Is Cleaning and sanitization of the Isolator glove required before VHP?

What should be the frequency of Glove integrity testing?

What is better:
Automated glove integrity testing?
Visual Inspection?
Both?

AUTOMATED TESTING

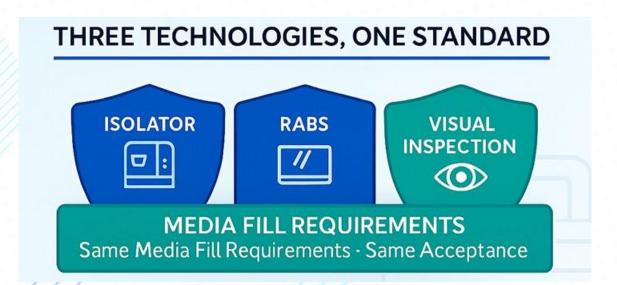

• Micro-leak detection
• Objective
• Quantifable

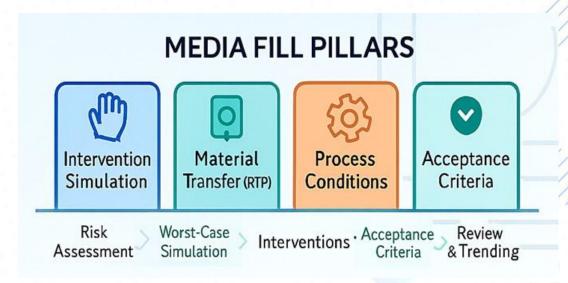
• Quantifable

VISUAL INSPECTION

STRONGEST PROTECTION
• Physical defects
• Contamination
• Aging / wear

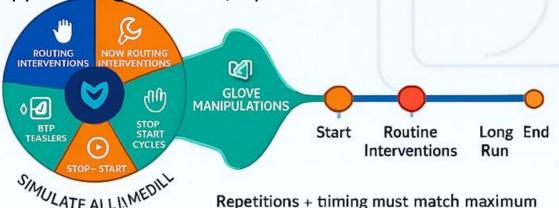
Qualification of Automated glove integrity testing and Glove Visual Inspector is important.





Key considerations

- Same as for RABS
- All points required as per Regulatory guidance to be considered.
- No difference in RABS / Conventional media fill vs Isolator media fill. Risk based approach to be followed
- Same acceptance criteria (Target is Zero)



Interventions for simulation

- Risk assessment / RPN
- Grouping of Interventions (By Risk or by zone or by type). Complexity of performing the interventions should be one criterial in RA
- Frequency of simulation of these interventions can done by groups or RPN number
- Some related to out side of the Isolator can be avoided (E.g. Number of persons present etc)
- No. of interventions or glove entry which can happen at a given time / Speed of intervention

production risk.

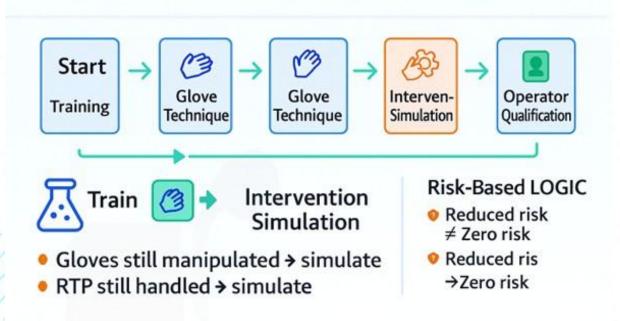
Key Interventions in Isolators

- Important interventions (Not limited to)
 - Placement of hand
 - Transfer of material after VHP
 - EM
 - Staging of material post VHP
 - Assembly post VHP
 - Sampling and removal of vials
 - Component addition
 - Other corrective interventions

Bets Practice

Documented evidence that efforts were made to reduce interventions

Should all intervention be simulated in Isolator media fill vs Conventional / RABS media fill including repetitions and time of interventions?


1. Operator qualification should be part of APS

Should Operator qualification should be part of APS for Isolators

OPERATOR QUALIFICATION PATHWAY

Should integrity be verified pre and post batch for the following

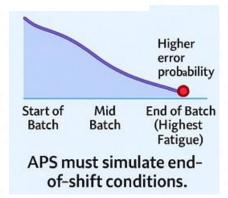
Isolator?

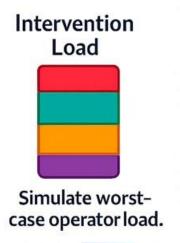
Gloves?

RTP containers?

Integrity Verification = Start + End + After Interventions

All three — Isolator, Gloves, and RTP Containers — require integrity verification pre- and post-batch to maintain sterility assurance and comply with PDA, Annex 1, and industry expectations





Does operator fatigue simulation important in Isolator?

"Operator Fatigue & Human Factors Still Matter in Isolators"

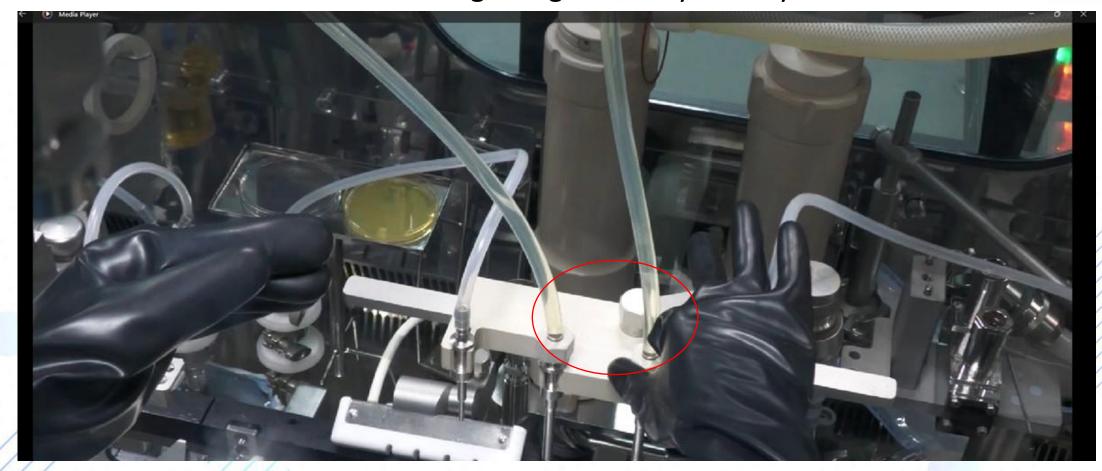
Does Isolator provide more confidence in establishing longer fill time in multiple shifts and Multiple days?

Power failure studies in be simulated Isolator?

Is same aseptic practices required in Isolator as is expected in conventional clean rooms?

Break in first air?

BREAK IN FIRSTAIR = CONTAMINATION RISK (EVEN IN ISOLATORS)



Break in first air during filling assembly activity

Break in first air during rubber stopper charging activity

Is it acceptable that the VHP decontaminated gloves comes in contact with the Sterilized product contact parts?

During filling assembly process Isolator glove directly touch to sterile product contact parts

Do smoke studies be similar to Isolator and Conventional / RABS lines?

THREE SYSTEMS, ONE STANDARD

Any additional smoke studies requirement we should perform for Isolator?

- 1. Static Smoke studies?
- 2. Dynamic smoke studies?
- 3. Material Loading
- 4. Material movement smoke?

THREE TYPES OF SMOKE STUDIES

Static Smoke Studies (At-Rest)

- ✓ Mandatory
- ✓ Required for all aseptic systems (Conventional / RABS / Isolator)

Purpose:

- Verify unidirectional airflow integrity
- · Confirm uniform sweeping airflow inside isolator
- · Identify **dead spots**, vortices, recirculation zones around:
 - Corners
 - Behind equipment
- · Confirm proper airflow from HEPA to product contact surfaces
 - Under filling needles
 - Stopper bowls, transfer trays

Dynamic Smoke Studies (In-Operation)

- Mandatory
- ✓ Must include operator glove interventions
- Visualize airflow during worst-case glove movements
- Evaluate impact on first air protection
- · Ensure **no turbulence** or backflow when performing:
 - Aseptic adjustments, Sensor alignment, Jam clearance
 - Component handling

Confirm airflow remains Grade A while line is running

Material Loading Smoke Studies (Isolator-Specific)

- ✓ Strongly required
- ✓ More critical in isolators than in RABS/conventional systems

Purpose:

- Demonstrate that loading via RTP, β-containers, transfer chambers, sliding doors does not:
 - o Disrupt first air, Introduce turbulence in the product path,
 - Create recirculation at load points

- Confirm airflow protection during:
 - Component bags introduction
 - Tub ready component loading
 - Tool introduction
 - Pre-fill staging
- Show how airflow behaves when **heavy or large components** are placed inside isolator

Environmental Monitoring: Operational Key Points

Types

Air and Surface

Frequency

Risk based. But similar to RABS

Number of samples

Risk-based, CCS-driven. Continuous viable & non-viable EM

Time

Air: Prior to start of aseptic activity after decontamination. Should include any set up activity after decontamination

Surface:

End of the batch.
How to select the locations?

Gloves:

End of the batch.
All Gloves?
Opening the Isolator?

Microbial Data Deviations in Isolator

Higher concern than RABS Requires deeper investigation and assessment of cause

Transfer of plates

Preferably prior to decontamination
If between batches, RTP to be used including Risk assessment
Additional studies of GPT post decontamination
Handling of plates post batch to avoid false positive

AIR ENVIRONMENTAL MONITORING

Frequency

Risk-based, similar to RABS

ype Viable + non-viabile

Timing Before aseptic activity, after VHP decontaminalion Must include all-setup operations post-VHP

Sample Strategy

 Continuous viable and nioh-ble-monitoring

SURFACE ENVIRONMENTAL MONITORING

Risk-based, CCS-driven

Locations

- · High-risk zone hilltglited
- · Conract platos /ewabs

Selection Logic

- Product-contact adjacencies
- High-touch-glove contact surfaces
- · Material load paths

GLOVE ENVIRONMENTAL MONITORING

Highier concern than RABS

Requires deep investigation, including:

- VHP performance
- Glove-integrity
- Transfer path contamination
- Operator glove movement

TRANSFER & HANDLING OF PLATES

Tranefer of Plates

- Preferably transterred before decontamination
- If between batches → use RTP
- · Must include risk assessment

Post-Batch Handling Avoid false positives:

- · Controlled glove technique
- · Proper plate sealing
- Using validated procedures for removal

Post-I/f; (GP Growtn Promom) Testing required

Biological Indicators

- 1. How many locations for BI placement is right?
- 2. Is it OK to have 1 of the 3 BI failure at location?
- 3. How to identify the worst case location for BI placement?

Biological Indicators

BITYPE & SPECIFICATION

Bacillus stearothermophilus

106 spores per carrier

I must have validated D-value (e.g..1,5-2,0 min at 121°C)

Z-value

Rouge 81

CARRIER MATERIAL & COMPATIBILITY STUDIES

Carrier must be same as isolator material:

Stainless steel coupons (SS316L)

If polymer carriers used

→ equivalence studies required

VHP penetration studies for SS vs polymer

Carrier roughness impacts BI recovery

BI MONOLAYER / ROUGE BI

LOCATION SELECTION & WORST-CASE JUSTIFICATION

BI placement must be risk-based

Worst-case locations include:

- Shadowed areas
- Behind equipment
- · Corners, under conveyors
- · Largest load areas
- Airflow stagnation zones

Use airflow visualization to define worst cases

INCOMING RECOVERY & STORAGE REQUIREMENTS

Incoming BI recovery must be verified

BI must be stored under controlled temperature

Avoid heat, humidity, VHP exposure before use

Storage deviation shown with red exclamation icon

5 NUMBER OF BIS & TRIPLICATE STATEGY

Multiple Bls at each location recommended 3xBI

000

- Triplcicates required Difficult-todecontaminate areas 00
- Worst-case locations

New Automation

Feature	Traditional Isolator	Robotic Gloveless Isolator	
Human Interaction	Operators must insert their gloved hands into the isolator to manipulate materials.	Robotic arms or automated systems handle materials inside the isolator without human contact.	
Sterility Control	Contamination risk is higher due to human interaction, despite gloves.	Enhanced sterility due to zero human contact, reducing contamination risks.	
Efficiency	Less efficient, as human intervention is required for every task.	Highly efficient with automation and robotics handling tasks, reducing time and human involvement.	
Precision	Dependent on human dexterity, which can lead to variability in operations.	High precision and repeatability due to robotic systems and automation.	
Regulatory Compliance	Traditional systems may have limitations in documentation and automation of processes.	Designed for easier compliance with GMP and regulatory standards due to automated monitoring and traceability.	
Scalability	Scaling can be labor-intensive and may require additional human operators.	Scalable with minimal human labor, as robotic systems can handle larger volumes.	

Gloveless Isolator

Aseptic Filling Machines: Gloved vs. Gloveless | AST

Isolator: MythsIsolator System

Vikram Shukla

President: Injectables Operations
Zydus LifeScience

PA Cost vs Benefits

Feature

Conventional Cleanroom

Myth 1: Isolators is very costly with not much advantages?

Isolator

SAL High SAL	Lower OPEX, fewer failures	
Preferred by Annex1	Long campaigns, fewer interventions	

	Initial Cost	High	Moderate	Low
	Operational Cost	Moderate	Moderate	High
	Human Intervention	Minimal	Moderate	High
, ns	Contamination Risk	Very Low	Low to Moderate	High
	Regulatory Acceptance	Very High	High	Moderate
	Cycle Time	Longer	Shorter	Shortest
	Flexibility	Moderate	Moderate	High
5	ROI Timeline	Long-term	Mid-term	Short-term

RABS

Myth: If we set up a facility with isolator, there will not be any regulatory risk.

Reality:

- FDA Recognizes Isolators as a Superior Containment Technology
- But FDA Approval Is Not Automatic
- Isolators Must Be Properly Designed, Qualified, and Maintained
- FDA Has Rejected Sites with Isolators
- If isolators are poorly maintained, improperly validated, or used with inadequate aseptic practices, FDA can issue Form 483 observations or Warning Letters.
- Isolator use does not exempt a site from scrutiny.

Myth: Isolators eliminate all contamination risks.

Reality: Isolator reduces some risk of contamination, but regulatory inspections are holistic in nature and will require overall 6 systems to be implemented correctly to reduce risk

Myth: Isolators don't require environmental monitoring as thorough as done for conventional and RABS systems

Reality: Isolators do require monitoring more or less same EM as done for conventional and RABS systems

- Microbial EM
- Pressure differential monitoring, Temp, Humidity
- Leak testing
- Continuous non-viable particle monitoring

MICROBIAL EM

- Viable air sampling
- Surface/contact plates
- Glove EM (end of batch)
- Transfer port EM

PRESSURE, TEMPERATURE, HUMIDITY

- Continuous AP monitoring
- Temp & RH trending
- Alarm & deviation management

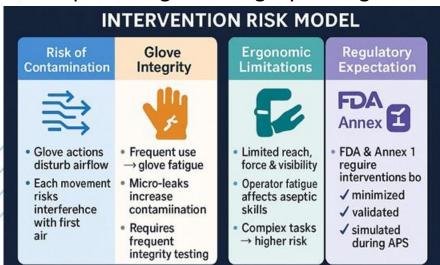
CONTINUOUS NON-VIABLE MONITORING •

- Grade A continuous particle monitoring
- Fill-zone NVP probes
- Real-time alarm & trending

LEAK INTEGRITY TESTING

- Isolator chamber leak test
- Glove integrity test
- · RTP container integrty check

Isolators reduce human contamination risk — but still require full, robust environmental monitoring to meet regulatory expectations.



Myth: We can do Unlimited Interventions in an Isolator as it is decontaminated by a validated method.

- Even though isolators allow remote manipulation via glove ports, interventions are not unlimited and must be minimized and controlled.
- Each intervention increases contamination risk, especially if gloves are damaged or improperly used.
- Glove fatigue and ergonomic limitations can affect operator performance and sterility.
- Design processes to be as automated and intervention-free as possible.
- Use Rapid Transfer Ports (RTPs) for material movement.
- Implement glove integrity testing and airflow visualization to ensure aseptic conditions are maintained

Isolators reduce contamination risk – but interventions must still be minimized and fully controlled.

Myth: Dynamic Smoke Studies in Isolators are not required.

However, regulatory guidelines and best practices clearly emphasize the need for airflow visualization studies (AVS) — including dynamic smoke studies — even in isolators.

WHY DYNAMIC SMOKE IS REQUIRED IN ISOLATORS

Glove Movement Disruption

Glove entry/exit and deep reach block first air— must be visualized Internal Equipment Disturbances

Feeder bowls, turntables, robotics alter airflow → be tested Material Loading Airflow Impact

Material entry changes airfiow patterns → must be smoke tested Regulatory Requirement

Annex 1 + FDA = Mandatory dynamic airflow visualization

Myth: Once VHP is validated, microbial excursion cannot happen inside an isolator.

- While Vaporized Hydrogen Peroxide (VHP) is a highly effective surface decontaminant, it does not guarantee a permanently sterile environment. Here's why:
 - VHP is a Decontamination Process Not a Permanent Sterilization
 - 2. Human Interventions via Glove Ports
 - Material Transfer and RTPs
 - 4. .Cycle Drift or Equipment Failure

How Contamination Still Occurs in Isolators

VHP is Not Continuous Sterility

- Only sterile after VHP cycle
- Not sterile once operations begin

- Glove fatigue
- Micro-tearsOverreaching
- blocking first air
 Incorrect technique

Material Transfer (RTPs)

- Misalignment
- Improper sanitization
- β-container contamination

Cycle Drift:/ Equipment Fallure

- VHP concentration drift
- Chamber leaks
- Aeration failure

Path to Microbial Excursion

VHP Cycle Complete Human Interaction Material Transfer Equipment Anomaly Microbial Excursion

VHP reduces contamination load — but isolator sterility depends on controls, behiavors, maintenance

IPA Isolator - Myths

Myth: If isolator is VHP decontaminated, first air compliance is less important

- Any intervention (e.g., troubleshooting, equipment adjustment) must follow **strict aseptic protocols**.
- Even minor deviations can lead to microbial excursions, especially if gloves or surfaces are compromised

FIRST AIR MATTERS BECAUSE...

VHP IS **BEFORE** production.

Only airflow protects during production.

Intervntions Biock First Alr

Glove movement disrupts airflow patterns → contamination risk

Gloves Can intrduce risk risk

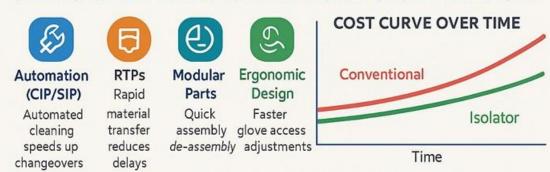
Micro-tears, fatigue, and improper use can cause microbial excursions.

Regulatory Expecttion

Annex 1: First Air must be protected 100% of the time, even in isolators

Isolators reduce contamination risk but First Air remains your primary aseptic protection during operation.

Myth: Isolator increases operational cost and changeover time is very high


- 1. While isolators may have higher initial costs, they often lead to lower operational costs and optimized changeover times when properly designed and managed
 - Initial Cost: Isolators typically cost 30–50% more than RABS due to their complex design and integrated decontamination systems.
 - Operational Savings:
 - Lower HVAC requirements:
 - Reduced gowning and cleaning:
 - Lower environmental monitoring burden:

OPERATING COST SAVINGS

Lower	Reduced	Lower EM &
HVAC Requirement	Gowning & Cleaning	Batch Failures
Smaller Grade A volume → lower HVAC cost	Operators in Grade C → lower gowning & cleaning effort	

- 2. Changeover Time: Not Necessarily Higher
 - Modern isolators are designed with ergonomic access, automated cleaning, and modular components to minimize changeover time.
 - Well-defined SOPs, mock-up studies, and risk-based cleaning validation can streamline changeovers.
 - Advanced isolator lines can support multi-product campaigns with efficient turnaround.

CHANGEOVER TIME: MODERN ISOLATOR ADVANTAGES

483 Observations Related to Isolators

Failure to perform required environmental monitoring inside sterility-testing isolator.

- Missing viable air and contact plates during dynamic operations.
- Deviations not recorded or justified.

Incomplete qualification of oncology manufacturing isolator system.

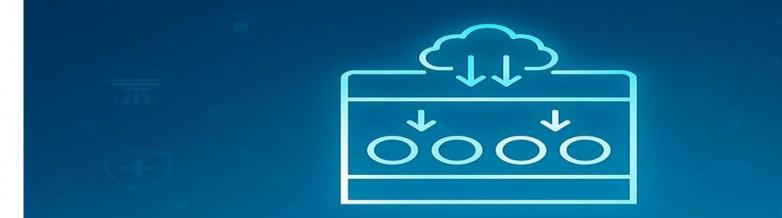
· Inadequate validation of isolator—lyophilizer integration.

Deficient glove integrity testing for cRABS/isolators.

- No rationale for needle size.
- No worst-case glove test position study.

Smoke study revealed operator behavior compromising isolator Grade A boundary.

· Transfer hose removed from isolator without maintaining Grade A protection.



Inadequate pressure and airflow control in isolators and micro-environments.

· Unverified HEPA and pressure control under dynamic conditions.

THANK YOU

Sterility by Design - Isolator System

Vikram Shukla

President: Injectables Operations
Zydus LifeScience